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Abstract. A new method for deriving universat matrices from braid-group representation is
discussed. In this case, univergabperators can be defined and expressed in terms of products
of braid-group generators. The advantage of this method is that matrix elemeRtsand

rank independent, and leaves multiplicity problem-concerning coproducts of the corresponding
quantum groups untouched. As examplésmatrix elements of [1k [1], [2] x [2], [13] x [12],

and [21]x [21] with multiplicity two for A, -type and [1}x [1] for B,-type,C,-type, andD,-type
quantum groups, which are related to Hecke algebra and Birman—-Wenzl algebra, respectively,
are derived by using this method.

1. Introduction

Universal R matrices are solutions of spectral parameter-free Yang—Baxter equations
(YBEs). YBE are of importance in both mathematics and physics, such as statistical
models [1], scattering matrices [2], knot theory [3], conformal field theory (CFT) [4] and
so on. Once the parameter-fré&e matrices are known, the parameter-dependent matrix
R(x) can be obtained by using the so-called Baxterization procedure [5-7]. Up to now
the derivations of the standa®l matrices have been obtained through the representation
theory of quantum groups by many authors including Drinfeld [8], Jimbo [9,10] and
Reshetikhin [11], and by taking limit of statistical models [12—-14] or by using Witten's
approach of the link polynomials [15, 16]. There are also many other methods to construct
R matrices [17-19]. Based on these methods, various class&soétrices have been
obtained, which can easily be found in the current mathematical-physics literature. From
these methods it can easily be seen fhatatrices are related either to the tensor products of
generators or to the Clebsch—Gordan (CG) coefficients of the corresponding quantum groups.
Thus knowledge of representation theory of quantum groups, such as coupling coefficients,
projection operators, and so on are very important in these methods to construct the standard
R matrices. In some cases, the multiplicity problem will be involved in the coproducts of
the corresponding quantum groups, which is very complicated to solve. Secondlg, the
matrix, usually expressed in terms of the CG matrix with summing over all the possible
resultant irreps of the corresponding quantum groups, can only be derived for specific
e.g. ofA,, or B, at a time. When the increases, the CG matrix will become very large.

It will soon become intractable for higherdue to the drastic increase of the number of the
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CG coefficients involved. It is also well known that matrix representations of braid-group
generators can be constructed by using Rhmatrix via

¢ =191® - ®1®R®1® - -®1 @)

whereR is in theith and(i + 1)th spaces. It can easily be proved that the representations
of the braid groups constructed in this way are not irreducible in general. However, on
the other hand th& operator can be regarded as the deformed permutation operator which
permutes two representations of the corresponding quantum groups. From this point of view,
the R matrix is representative ok operators in the uncoupled basis of the corresponding
guantum groups.

In this paper, we will outline a new procedure for deriving standard solution of the
universal R matrices from representations of braid groups directly. Rheperators will
be expressed in terms of products of the corresponding braid-group generators, which are
acting on the vector-product space of the quantum groups. In this case, we only need CG
coefficients of }] x[1] of the quantum groups. Such CG coefficients are very simple, and of
course always multiplicity free. Furthermore, the calculation is rank independent. It opens
up a new way to comput® matrix elements for arbitrary once and for all, instead of one
n atatime. As example®t matrix elements of [1k[1], [2] x[2], [12] x[12], and [21]x [21]
with multiplicity two for A,-type, and [1}x [1] for B,-, C,-, and D,-type quantum groups,
which are related to Hecke algebra and Birman—Wenzl algebra, respectively, are derived by
using this method.

2. The R operators
Let V41 and V1% be spaces spanned by basis vectors of irreducible representation$ of |
and ]p,] of any quantum group. Then, the action Bfis defined by

R(VM @ ylaly _ ylhl g ylrl 2)

We assume that maximum rank afi] and [r,] is f. Thatis 1] and [A2] can be constructed
by, at most, f-fold coproducts of rank-1 tensor operators of the corresponding quantum
group. For example, ifA;] is of maximum rank, we can write

ere.-. @1/ — Tl 3)

whereT? withi = 1,2,..., f are vector operators in thi¢h space. In thei-type quantum
group case, in order to label the basismf, one can assign a Weyl tablea1l («9)
to 71, where(a)(l’) =(1,2,..., f) is used to indicate that thg vectors are coupled to
[Al] Now we assume that the rank of9] (w9, 2f —k + 1,2f —k +2,...,2f), where
(a)z) =(f+1 f+2,...,2f —k), while the indiceq2f —k+1,2f —k+2,...,2f) are
used to label the remaming scalars, i.e.

Tl ® TZ R ® T2f—k ® 12f—k+l R - ® 12f — T[)»z]. (4)
Hence, the uncoupled basis vectorswf*!, wl*2) can be written explicitly as

lwh(0?), W (@3, 2f —k+1,2f —k+2,...,2f)) (5)

according to the braid-group action, i.e. equation (5) can now be understood as uncoupled
basis vectors of braid grouB,, under theR operation with

R{(@Y), (@2.2f —k+1,2f —k+2,....2)}
= (@, 2f —k+L1,2f —k+2,...,2f), (w1)}.
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Under this labelling scheme, we find the operator can be expressed in terms of
braid-groupB,, generators.

Iéle =41 (6)

Ry—2 = 82818382 = g2R1g8382. @)
Through induction we finally obtain

Rp = 878 418f+2---82f—2Rp_ 182718272 ... 8f+28F+18f- 8

Equation (8) gives the universa operator for fixedf in braid-group generator product
form, where f is the maximum rank of irreps of the corresponding quantum groups. The
universality means that the operator given in (8) satisfies (2) for any irrep of any type of the
corresponding quantum groups, which is just what Jimbo and Drinfeld referred to [8—10].
The differences between this work and those of Jimbo and Drinfeld are

(i) the universalR operator is now written in terms of braid-group generator product
form

(i) the R operator defined in (8) is rank-dependent.

It seems that the&t operator given in (8) loses some universality. However, one can use
it to compute all universak matrices because (8) is valid for arbitrary rafilof irreps in
the tensor product space of the corresponding quantum groups given in (2). While in Jimbo
and Drinfeld’s works theR operator is written in terms of quantum double basis of Hopf
algebra, which is rankf independent. Thus (8) can be regarded as a braid-group form of
the universalR operators formerly defined by Jimbo and Drinfeld.

The problem concerning the braid-group realization for the fixed type of the
corresponding quantum group has been studied in many works [9, 10, 20], from which
one knows that the braid-group realization is Hecke algebra foAthge quantum groups,
is Birman—Wenzl| algebra for th8, C and D types, and is Kalfagianni algebra [22] fa¥,.
However, the problem still remains open ffj-, and theE-type quantum groups. In the
next section, we will outline a procedure for evaluating fienatrices concerning-type
guantum groups, and will also give a simple example for RheC-, and D-type cases.

3. Evaluation of R matrices

In this section, we will outline a procedure for evaluatiRgmatrices. We will consider
Hecke algebra for tha-type quantum groups and give an example of Birman—Wenzl algebra
for the B-, C-, and D-type cases separately.

The R operator is a braid-group element, which can be expressed in terms of braid-
group generators by using (S)R operates among the coordinate indidés2, ..., 2f}.
Any uncoupled basis vectots™ (0?), (w3, 2f —k +1,2f —k+2,...,2f)) of any
guantum group can further be expanded in terms of uncoupled basis vectofs-of-fold
basic representations, namely

lw* (@), w3, 2f —k +1,2f —k+2,...,2f))

=Y a,0ular az, ... ag_, 1 1272 1% 9)
where a, can be obtained by using the CG coefficients for the coupling
(1®)"HPM((1®)/~%)* of the corresponding quantum groupq, az, . . ., azs—i} are the
vector components of the quantum group satisfying the normal ordefirga, < --- <
axs—i, and Q,, is the left coset representative in the decomposition

BZf = Z@Qw(Bl X Bl X oo X Bl) (10)
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For example, using the CG coefficients @f(2) tabulated in [21], we have

-1 -1
laa, ab) = /q[7]|a,a,a,b)+ /[g—]m,a,b,a): /%—i— /[g—]gg la,a,a,b) (11a)
1

lab, aa) :ﬁm,b,a,a)—i— [%V?,a,a,a)
gt q
= ﬁgzgs + \/;glgzgs la,a,a,b) (11b)

where ] is the g-number ofx. The vector-space indices are arranged in natural order, e.g.

la, b, ¢) ~ TTAT? (12)
and the uncoupled basis vecto,|as, az, ..., azp_i, 12/ 7*+1 12/=k+2 127y with
differentw anda;s are orthonormal:

(ay, ay, ..., a/szk, 12/ k1 q2f-k+2 2] QI}/ Qolar, as, . ..
cagpoy, VIR 20k 2y =5, ]—[ Sura- (13)

That is, we use the orthogonal uncoupled basis of the quantum group. In this case, it can
be proved that the braid-group parameters, ,gshould be real, otherwise (13) will no
longer be valid. Equivalently, we have used the following star operation

gl=g  fori=12..2f-1 (14)

However, results for generic braid-group parameters can be obtained through analytical
continuation, i.e. the final results are valid for generic parameters as well.

The action ofg; on the basis vectorgu, az, . . ., azs—, 12/ 7%+ 127,21 112/} is
given by the following rule

a2 12/ —K+1 92/ —k+2 12/

gilaa, az, ..
=gqlai, ay, ..., azf—i, 12f7k+1, 12f7k+2, ceey 12f) (15&)

if the componentsy; and a;,; are the same. This rule can be proved by using the
symmetrization method outlined in [21]. While

gilay, ap, .. .ags g, 12I7HHL 420420 927
=1a1, e Qi1 iy e Ay, V2RI 12T7RR20 92 (130)

if the componentg; anda;,, are different. It should be noted that because of the property
of braid groups, we should always write the uncoupled basis vectors in the operator form.
For example, in the Hecke-algebra case

gl'asb> = |b$a> (163.)
g1lb, a) = g?la, b) = (¢ — g Y)Ib,a) + |a, b) (16b)

otherwise the notatiofb, a) is rather confusing in the practical computation.

Hence, the action of the operatiron the uncoupled basis vectors of quantum groups
is well defined. Using (15) and defining relations among braid-group generators, we can
derive theR-matrix elements. In the following, we will outline how to use this procedure
to derive R-matrix elements. First, we will discuss the Hecke-algebra case. Then, we will
show a simple example in the Birman-Wenzl-algebra case.
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3.1. Hecke-algebra case

The Hecke algebrdd;(g) is generated by — 1 elementsgy, g2, ..., gr—1, Which satisfy
the following well known braid relations

8i&i+18i = &i+18i&i+1 (17a)
8ig = 8&&i for|i —jl>2 (1)
()’ =g(@—qghH+1 (17c)

The braid-group element®, which can be expressed in terms of braid-group generators
by using (8), are operating among the vector space indites ..., 2f}. Any uncoupled
irreducible basis vectorgo™! (0?), (w9, 2f —k+1,2f —k+2,...,2f)) of U,(n) can
further be expanded in terms of uncoupled basis vectorg ef 2fold basic representations
are given by (9). In the following, we restrict ourselves 1g][= [A2], and use [2)x [2] as
an example.

Step 1.Write out all the uncoupled basis vectors of the corresponding quantum group.
In the [2] x [2]U, (n) case, these are

lii,ii) = |i,i,i,i) (189)
[q7t q g1 q
|l],l]>: 7“7]9171)_’_ 7|J7lvlsl> 7|1,1,l,])+ 7|1717.}71>
(2] [2] [2] [2]
= AAzagoli, i, j, j) fori <j (180)
where
1
A= —-(g"Y? +q¥%g1) (199)

(2]

_ i ~1/2 1/2
A34—‘/[2](q +q7°g3) (190)

where the CG coefficients of [ [1] | [2] of U,(n) have been used. Similarly, we have
lij, kl) = A12Az4li, j, k, 1) fori <j<k<lI (19)
while
ki, ij) = Rlij,kI) = g283g182lij, kl). (19d)
All the other basis vectors can thus be written out similarly.

Step 2.Derive algebraic relations amorié, A1o, Aza.
It can be proved that

RA1 = AR (209)

RAszs = A1R. (20b)
Thus, we obtain

RA12A34 = A12AnR. (21)

Equation (21) is very useful in the practical computation. We also need the following
guadratic equation oR:

R?=(q — g HggsR +a - g DR+ (¢ - 418381828183 + (¢ — ¢ 1) g28182
+(q —q )g28382+ (@ —q g2+ 1. (22)
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Step 3.Applying R on all uncoupled basis vectors obtained in step 1 and using the algebraic
relations derived in step 2 and (15), we thus obtain all Ramatrix elements in this step.
For example, in [2)x [2] of U, (n) case, we have

Rlii, ii) = gag18382li. i. i, i) = q*lii, ii) (23)
Rlij, lij) = RA12Az4li, j, 1, j) = RA121A34g2|i, i, j, j) = A12A3182838185i, 1, j, J)
= A12A3482838182(q — q )i, i, J, j) + A12A34828381li, 1, J, J)

= A12A3a(q — ¢ Dj, J i, i) + ¢*Ar2Azali, i, j). (24)
Using the following relation
Anli, i) = q"?[2]Y2)i, i) (25)
we obtain
Rlij.ij) = (¢° — g Dljj.ii) + ¢*lij.ij)  fori < j. (26)
Similarly, we have
Rlij, kl)y = |kl,ij) fori<j<k<l (27a)

RIKL, ij) = R%|ij, kl) = (¢ — ¢~ H%(g% + DKL, ij) + (¢° — g I jL, ik) + (% — Djk, il)
+(g? = D)il, jk) + (g — g Yik, jI) + |ij, Ik) fori <j<k<lI.
(27)

All the other I?-matrixv elements can thus be derived by using this method. In the next
section we list all thekR-matrix elements for [1k [1], [2] x [2], [1?] x [1?], and some of
[21] x [21] for U, (n).

3.2. A simple example of the Birman—Wenzl-algebra case

Birman-Wenzl| algebr& (r, ¢) is generated byg;;i = 1,2, ..., f — 1}, which satisfy the
braid-group relations (& andb) with constraint

(& —r D& -9 +qH=0. (28)
One can also introducg — 1 auxiliary generatorge;; i = 1,2, ..., f — 1} with
. _ o1
o=1-5"8 (29)
q9—q9

The following relations are helpful in practical computation

eigi =r"te (30a)

e? = xe;. (30b)
Using the above-defined relations, one obtains

g2=(q—q Mg —rte)+1 (31)

We considerB,, C,, and D, cases with irreps [1k [1]. In this caser = ¢%* for B,,
r = q> 1 for D,, andr = ¢~ for C,. The procedure for evaluating th-matrix
elements in this case is similar to that for those of the Hecke-algebra case. First, we write
out all the uncoupled basis vectors of J1]. These aréu, v) for —n < u, v < n. TheR
operator isg;. However, thee; operator is so-calleg-deformed trace contraction operator
defined by

erli, —v) = (=)"*8,0 Y _(—)'q" Ik, k) (32)
k
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when it is applied to the uncoupled basis vectors of the corresponding quantum groups.
Using (32), and assuming that the uncoupled basis vectors are orthogonal, one can prove
that

gulp, —p) = r7Y — ) for 1 # 0. (33a)

If both . and v are non-zero, we can use (15) to derive fhenatrix elements. These are

gilm, m) = qlp, 1) (330)
g1, v) = v, u) for u>v, u#—v. (33)

Then, using (31), we get

gilv, ) = (g — g Hlv, ) + |, v) for uw > v, pu#—v (33d)

gil =) =@ =" )l -+ (g —q T =g gD = )
—(g—a7 Y 4"k k). (33¢)

kFp,—up
In the B, case, we need uncoupled basis vectfr§). Using (30), and (32), we obtain
2110,0) = Y (=) aul — . 1) + Y _(=)"buli, —p1) + col0, 0) (33)
u>0 u>0
where

a, = q*M},fl _ qfu+1+q7ufl+q172/4 _ q72ufl _ qurfl
q-q*

Sl A g 4 g7 (349)
.
q—q'
bu=rq" =g g —rg T g =g g+ ) (340)
_ ,—n+l _ -1 —n—1
co=r71~|—q 1 4T : (340

qg—1
Using (31), we can prove that the basis vectorsu, 1), and |0, 0) are not orthonormal.
The normalized basis vectors of [&][1] of B, C, and D cases are

[, ) = |u, @)
I, v) = |u, v) for > v, pu#—v
[v, w) = v, u for u > v
I, —p) = |, —u) for u >0
— = S —p) forps0
- /.L, I’L = | — Ma I‘L I/L >
N,
0.0)= . 10.0) (35)
9 - NO 9

where

Ny, =r2—rqg"(q—q™
N2 _ Zusoldirc —a"" 44" + b}
1+ (g —g H(co—r) +cf
If one knows the CG coefficients foi] x [1] for the corresponding quantum groups,
one can also derive oth&®-matrix elements as have been done in thecase.

(350)
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4. SomeR-matrix elements of the Uy(n) case

4.1. [1] x [1] irrep

In this caseR = g;. We have

Rli, i) = qli, i)
Rli, j) = 1j, i)
RIj.i)=(q —q Hlj.i)+1i, j). (36)

4.2. [2] x [2] irrep

In this caseR = gg123g2. We have

Rlii, ii) = q%ii, ii)
Rlii,ij) = ¢?lij, ii)
Rlij, jj) = q?1jj. ij)
1§|z‘i, Ji) = 1jj.ii)
Rlij, kl) = |kl,ij)
Rlij, kk) = |kk, ij)
Rlik, jj) = 1jj.ik) + (g — g ) (q[2) 2| jk, ij)
R|jj,ik) = (¢ — ¢~ D (q[2DY?|jk. ij) + lik. jj)
Rlik, jl) = (q — q YIkl, ij) + | jl, ik)
Rlij.ij) = (¢ —q™DIjj. i) + ¢%lij, ij)
Rlij,ii) = ¢%lii,ij) + (¢g* — D)ij, ii)
RIjj.ijy = q?lij. jj) + (¢* = DIjj.ij)
Rlil, jky = |jk,ij) + (q —q DIjl, ik) + (g% — DKL, ij)
Rljk.ily = (g — g YIjl. ik) + lil, jk) + (¢ — DIKL, ij)
RIjl, ik) = |ik, jI) + (¢ — g D (jk, il) +il, jk) + (g — ¢~ D2|jl, ik) + (¢ — @)IkL, i])
RIjj.ii) = (q* — ¢* — 1+ q 7D jj. ii) + lii, jj) + @* — g Dlij. ij)
Rljk.ij) = (24% + q72 = 3)|jk. ij) + qlij, jk) + (@ — g D @2DY?(lik, jj) + 1], ik)
RIkl,ij) = (q — g H%(@® + DIkl ij) + (¢ — @)ljl. ik) + (¢° — D] jk, il)
+(q® = Dlil, jk) + (q — g Dlik, jl) + |ij, Ik)
Rlij, ik) = qlik, ij) + (¢¥? — g YP)[2]| jk, ii)
Rlik,ij) = qlij. ik) + (g% — Dlik. ij) + (g° — D(q[2])?|jk. ii)
R|jk.ii) = (q — ¢~ H2lq|jk. ii) + lii, jk) + (¢* — D(q[2D"?|ik. ij)
+(g —q Hlij.ik)
RIkk, ij) = qlij. kk) + ¢%*(q — g H[21%|kk. ij) + (¢* — D(q[2)"?| jk. ik)
+(q — g 2D ik, jk)
Rlik, jk) = qljk, ik) + (g — ¢ H([2]q)*|kk, i)
Rljk,ik) = (q® — Dl jk, ik) + qlik, jk) + (¢ — D(q[2D)Y|kk, ij). 37)
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4.3. [17] x [1?]irrep

i g)=efs )

o if=ele )

& D=al )

Ry )=all )

)=l et )

Iéli ’ ;>=(q2—1);i ' j’>+q; , ’l<>

I S A (B

B ) =ale s D)ol )

1%1; ’ j‘>=q1[2](q—ql)2]; ’ i>+(l qis){ ' ll<>
“a-gd|] Y —amen]l )
ra-ad o 1)+]s )

Iéj ' ]i>:(q_q1)2; , ]i>+(q1 g% P ;>+(q—ql)£ ’ ;>
+(q—q’1); ' £>+,lc ! 5>

T R R S IR R IR

N e e A A

4.4. [21] x [21] irrep

In this caseR = gagagr93g1828584g3. Using the CGCs for [1k [1] | [2] or [11], and
[2] x [1] | [21] or [11] x [1] | [21], we have the following expansions for uncoupled basis
vectors of [21]x [21].

ij q _ oL o

Jj>= ﬁ(l_'_qgl_q 1[2]8281)“, Ja .I> = B](?2|la ./a J>

i q _ _ oL L
ljl>= @([2]—61 202 —qg1g2)li. i, j) = Blli. j. J)

ik 1 1 .. 2. .
il= @(ngrqglgz —q 8281 — 8281821, j, k) = Bi,li, j, k)
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ij

. 1 q—2 -1 q—l
k >_ [3]( s = 82 s

1 ..
818281 ) li, j, k)

Ty 8281 — 2]

= Blz|i, J, k). (39)
We can also prove that
RBL,Bjs = Bh:B,R for 0< p,r <3, (40a)
and
RBL, = BiR RBJ; = BL,R for0< p < 3. (400)

After a long calculation with the help of Hecke-algebra relations defined by (17), we
can also derive the following quadratic equation for

=(q—q"? Rg1g2g5g4g3 +@—q H)3R + (g—q 12 Rglgzglgsg4g5g3
+@G—q ) nggz +(q — g HgsReagsgr + (¢ — g *Rgiga
+(q — ¢ 1?(82838485848182818382 + 82838485848382848384
+8283848584838283 + 838182818384858483828381
+838485848183828384838581 + 83848385818281848384
+83848182838182848381 + 83848281858283 + 8384828385828483
+838482858483 + 8384828381828483 + 83828483 1+ 85838481828384858281
+848382848384) + (¢ — g 1)(82838485848382 + 838481828382848381
18384858483 + 83848182818483 + 838483 + 83 1+ 838283
+858481828384858281 + 8384828384) + L.

Using these relations, we get

(41)

< | Qi ii 5| il ii
R|. ' )= Lo,
J ]> 1 J J>
{7 el )
J J J J
B ii , i_j>=q4 l] , i.i>
J J J J
3 ik , jk _ g jk ' ik
k k k k
I l] , jj>:q4 Jj l]>
J k k J
sit @i\ glil | il
Kl k>“’ k j>
Bl i.k>=q3 ik , l_]>
J J J J
s|ik | ik\ _ 3|ik ik
Kl w >_q k J’>
3 l.l , ij>=q3 ij , i.i>
jook k J
PR ANV
k k k k
I z.k ; l,k>=q3 ik | ll>
J J J J




X< =< =< < =< < X< X< < X< < X< < =< =< =< =<

=<
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where we always assume thatli < j < k <[ < n. The above results exhaust all the
R-matrix elements for [1k[1], [2] x[2], and [#] x [12]. Because there are too many matrix
elements for [21k [21], we only list those foi/, (3) completely. But thesé]q(B)é-matrix
elements are also those 0f,(n); i.e. the results ar@ independent. Secondly, another
advantage of this method is that it leaves the coproduct multiplicity problem untouched in
contrast with the projection operator technique, in which one should derive the CG matrix of
the corresponding quantum groups. Sometimes the coproduct concerned is not multiplicity
free. For example, in our [21} [21] case, the resultant irrep [21] is of multiplicity two.
However, in our method th& operator is acting on the uncoupled basis vectors of the
corresponding quantum groups, and has nothing to do with the CG coefficients o{241]

From these simple examples, it can easily be seen thakhmatrix elements obtained in

this way aren independent; i.e. all th&-matrix elements o, (n) listed apply for arbitrary

n.
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The procedures for evaluating-matrix elements of other quantum groups are very
similar. For example, we can evaluatematrix elements for th&, case with the help of
Kalfagianni algebra [22]. Hence the problem for constructing Ramatrix is switched to
find out all the possible algebraic realizations of the braid group. It should be noted that
this method will also become very tedious when the rank of the irrep increases. In such
a case, theR operator is expressed in terms of a lengthy braid-group generator product.
Though this method is not simpler than the other methods for higher-dimensional irreps of
the quantum group, it shows us a new way to calcukateatrix elements, a new perspective
of R matrices, and a transparent view of its braid-group structure.
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